%0 Journal Article %J Geology %D 2015 %T Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1. %A W. Berry Lyons %A Dailey, Kelsey R. %A Kathleen A. Welch %A Deuerling, Kelly M. %A Sue Welch %A Diane M. McKnight %X

Due to iron’s role in oceanic primary production, there has been great interest in quantifying the importance of Fe in regions where concentrations are very low and macronutrients, nitrate and phosphate, are available. Measurements of filterable (i.e., <0.4 μm) Fe concentrations in streams from Taylor Valley, McMurdo Dry Valleys, Antarctica, suggest that coastal-zone stream Fe input to the Southern Ocean could potentially play an important role in primary production in nearshore regions. Filterable Fe (fFe) data from streams in the McMurdo Dry Valleys were used to represent glacier meltwater that flows through ice-free landscape with the potential of transporting Fe to the Antarctic coastal zone. Estimates of potential fFe flux to the Antarctic Peninsula region using our mean fFe concentration of 10.6 µg L–1 combined with an estimate of ice-free area for the Antarctic Peninsula result in an fFe flux of 1.2 × 107 g yr–1. Although small compared to iceberg and aeolian Fe fluxes, future stream input to the Southern Ocean could increase due to glacier retreat and 

%B Geology %V 43 %P 1003 - 1006 %8 11/2016 %G eng %U http://geology.gsapubs.org/lookup/doi/10.1130/G36989.1http://geology.geoscienceworld.org/lookup/doi/10.1130/G36989.1 %N 11 %! Geology %& 1003 %R 10.1130/G36989.1 %0 Thesis %B Geological Sciences %D 2010 %T Aeolian sediments of the McMurdo Dry Valleys, Antarctica %A Deuerling, Kelly M. %A W. Berry Lyons %K aeolian transport %K Antarctica %K dust %K experimental leaching %K geochemistry %K McMurdo Dry Valleys %K sediment provenance %K weathering %X

The role of dust has become a topic of increasing interest in the interface between climate and geological/ecological sciences. Dust emitted from major sources, the majority of which are desert regions in the Northern Hemisphere, is transported via suspension in global wind systems and incorporated into the biogeochemical cycles of the ecosystems where it is ultimately deposited. While emissions within the McMurdo Dry Valleys (MDV) region of Antarctica are small compared to other source regions, the redistribution of new, reactive material by wind may be important to sustaining life in the ecosystem.


The interaction of the dry, warm foehn winds and the cool, moist coastal breezes “recycles” soil particles throughout the landscape. The bulk of sediment movement occurs during foehn events in the winter that redistribute material throughout the MDV. To understand the source and transfer of this material samples were collected early in the austral summer (November 2008) prior to the initiation of extensive ice melt from glacial and lake surfaces, aeolian landforms, and elevated sediment traps. These were preserved and processed for grain size distribution and major element composition at the sand and silt particle sizes. Major elemental oxide analysis indicated that the silt and sand size particles are of different composition: SiO2 values for silt range from 50 to 59% by weight and for sand range from 59 to 74%. When compared to the elemental oxide composition four rock types present in the MDV, the composition of the silt indicates a mixing influenced mostly by the igneous rock types (Ferrar Dolerite and McMurdo Volcanic basanite) and sand a mixing influenced largely by the sedimentary rocks (Beacon Sandstone and the metasedimentary Basement Complex). This could imply a local source of the aeolian material that is corroborated by low CIA values at both particle sizes (44-57%) indicating low degrees of chemical weathering. In addition, comparison of 87Sr/86Sr and 143Nd/144Nd to values published for the major MDV rock types and ice core dust to values analyzed in 3 silt size glacier sample and one bulk glacier sample also indicates a local source of sediments and that it is not likely to be transferred inland.


During the melt season, the aeolian material is actively solubilized where it interacts with water, releasing solutes and vital bioavailable nutrients throughout the aquatic system. Differences in the chemistry of supra- and proglacial streams as well as lake surface waters may be derived from the deposition and dissolution of these aeolian sediments. To simulate these conditions, a two-step leaching method using deionized water to represent glacial melt in field conditions was employed and leachates analyzed for major ion and nutrient constituents. Leachates represent a small degree (<0.7%) of dissolution of major elements, and are solubilized to a greater extent from samples closer to the coast or with increased silt content. The composition of the leachates reflects the dissolution of the major salts found in the MDV. Leach 1 (cold water) indicates that Na- and Cl-bearing salt phases are dissolved to a greater extent than seen in Leach 2 (freeze-thaw). Conversely, Leach 2 compositions indicate that carbonate mineral dissolution and Mg-bearing silicate weathering are proceeding to a greater extent than in Leach 1.


Inorganic N:P ratios follow the same patterns of nutrient limitations based on the Redfield Ratio found by Priscu (1995) in the terminal lakes of the Taylor Valley: N-limited in the Fryxell and Hoare basins (east) and P-limited in the Bonney basin (west). This is also consistent with the age of the tills in the area, as found by Gudding (2003). The concentration of soluble Fe in the leachates is about the same as soluble inorganic P, and thus is not a limiting nutrient in the leachates. Comparison of total dissolved N and P to their inorganic counterparts reveals increased organic nutrients in the glacier and lake leachates that may indicate the influence of biota. Nutrient fluxes based on known sediment fluxes from elevated sediment traps deployed throughout the MDV and the composition of these leachates range from 0.34-330 g a-1 for N, 0.02-8.3 g a-1 for P, and 0.03-8.6 g a-1 for Fe. These are at least two orders of magnitude less than calculated loads from streams to the lakes in the Taylor Valley and, thus, should be considered underestimations or minima.


This work provides the first investigation into the composition and source of aeolian transported materials in the MDV, as well of what is potentially solubilized from it during the austral summer melt season. In addition, it will contribute to the understanding of the interplay between aeolian and aquatic processes in the MDV and further the understanding of this unique ecosystem.

%B Geological Sciences %I Ohio State University %C Columbus, OH %V M.S. %G eng %U http://rave.ohiolink.edu/etdc/view?acc_num=osu1290524862 %9 masters