McMurdo LTER Publications

Export 404 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Voytek MA, Ward BB, Priscu JC. The Abundance of Ammonium-Oxidizing Bacteria in Lake Bonney, Antarctica Determined by Immunofluorescence, PCR and In Situ Hybridization, in Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series. 1998;72:217-228.
Kepner RL, Wharton, Jr. RA, Galchenko V. The abundance of planktonic virus-like particles in Antarctic lakes. In: Ecosystem Processes in Antarctic Ice-free Landscapes. Ecosystem Processes in Antarctic Ice-free Landscapes. Rotterdam: Balkema Press; 1997:241-250.
Carpenter S, Lundberg P, Mangel M, et al. Accelerate Synthesis in Ecology and Environmental Sciences. Bioscience. 2009;59:699-701. doi:LTER.
Levy JS, Fountain AG, Dickson JL, et al. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Scientific Reports. 2013;3. doi:10.1038/srep02269.
Šabacká M, Priscu JC, Basagic HJ, et al. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology. 2012;155-156:102 - 111. doi:10.1016/j.geomorph.2011.12.009.
Witherow R, Bertler N, Welch KA, et al. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: Evidence from snow pit analysis. Antarctic Science. 2006;18:497-505. doi:LTER.
Witherow R, Bertler N, Welch KA, et al. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: Evidence from snow pit analysis. Antarctic Science. 2006;18:497-505. doi:LTER.
Diaz MA, Adams B, Welch KA, et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Earth Surface. 2018;123(12):3323 - 3337. doi:10.1029/2017JF004589.
Diaz MA, Adams B, Welch KA, et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Earth Surface. 2018;123(12):3323 - 3337. doi:10.1029/2017JF004589.
Pearce DA, Alekhina IA, Terauds A, et al. Aerobiology Over Antarctica – A New Initiative for Atmospheric Ecology. Frontiers in Microbiology. 2016;776796194610314927235011365134445142846479110123936574(53307413). doi:10.3389/fmicb.2016.00016.
Pearce DA, Alekhina IA, Terauds A, et al. Aerobiology Over Antarctica – A New Initiative for Atmospheric Ecology. Frontiers in Microbiology. 2016;776796194610314927235011365134445142846479110123936574(53307413). doi:10.3389/fmicb.2016.00016.
Spaulding SA, Wall DH. Algal investigations at varying temporal scales in an extreme environment: McMurdo Dry Valley lakes, Antarctica. 1996;Ph.D.
Doran PT, Priscu JC, W. Lyons B, et al. Antarctic climate cooling and terrestrial ecosystem response. Nature. 2002;415(6871):517-520. doi:10.1038/nature710.
Doran PT, Priscu JC, W. Lyons B, et al. Antarctic climate cooling and terrestrial ecosystem response. Nature. 2002;415(6871):517-520. doi:10.1038/nature710.
Gutt J, Isla E, Xavier JC, et al. Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews. 2021. doi:10.1111/brv.12679.
W. Lyons B, Laybourn-Parry J, Welch KA, Priscu JC. Antarctic lake systems and climate change. In: Bergstrom DM, Convey P, Huiskes AHL Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Dordrecht, The Netherlands: S; 2006. doi:LTER.
Nielsen UN, Wall DH, Adams B, Virginia RA. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology. 2011;34(11):1701 - 1711. doi:10.1007/s00300-011-1021-2.
Adhikari BN, Tomasel CM, Li G, Wall DH, Adams B. The Antarctic Nematode Plectus murrayi: An Emerging Model to Study Multiple Stress Survival. Cold Spring Harbor Protocols. 2010;2010(11):pdb.emo142 - pdb.emo142. doi:10.1101/pdb.emo142.
Doran PT, Wharton, Jr. RA, DesMarais DJ, McKay CP. Antarctic paleolake sediments and the search for extinct life on Mars. Journal of Geophysical Research-Planets. 1998;103(E12):28481-28493. doi:10.1029/98JE01713.
Cook G, Teufel A, Kalra I, et al. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynthesis Research. 2019;9(2). doi:10.1007/s11120-019-00621-0.
W. Lyons B, Dailey KR, Welch KA, Deuerling KM, Welch S, McKnight DM. Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1. Geology. 2015;43(11):1003 - 1006. doi:10.1130/G36989.1.
W. Lyons B, Dailey KR, Welch KA, Deuerling KM, Welch S, McKnight DM. Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1. Geology. 2015;43(11):1003 - 1006. doi:10.1130/G36989.1.
Hogg ID, Stevens MI, Wall DH. Antarctic Terrestrial Microbiology : Invertebrates. In: Cowan DA Berlin, Heidelberg: Springer Berlin Heidelberg; 2014:55 - 78. doi:10.1007/978-3-642-45213-0_4.
Gutt J, Adams B, Bracegirdle T, et al. Antarctic Thresholds - Ecosystem Resilience and Adaptation (AnT-ERA), a new SCAR-biology programme. Polarforschung. 2013;82:147-150. Available at: http://epic.awi.de/34238/1/Polarforschung_82-2_147-150.pdf.

Pages