McMurdo LTER Publications

Export 889 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Takacs-Vesbach CD. Factors Affecting the Distribution and Dynamics of Bacterioplankton Biomass and Diversity in Taylor Valley Lakes, Antarctica. 1999;Ph.D.
Takacs-Vesbach CD, Priscu JC, McKnight DM. Bacterial dissolved organic carbon demand in antarctic dry valley lakes. Limnology and Oceanography. 2001;46(7):1189-1194. doi:10.4319/lo.2001.46.5.1189.
Takacs-Vesbach CD, Priscu JC. Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: Production and biomass loss over four seasons. Microbial Ecology. 1998;36(3):239-250.
Takacs-Vesbach CD, Zeglin LH, Gooseff MN, Barrett JE, Priscu JC. Factors promoting microbial diversity in the McMurdo Dry Valleys. In: Life in Antarctic Deserts and other Cold Dry Environments: Astrobiological Analogues.Vol 5. Life in Antarctic Deserts and other Cold Dry Environments: Astrobiological Analogues. Cambridge University Press; 2010:221-257. doi:10.1017/CBO9780511712258.008.
Takacs-Vesbach CD, Priscu JC. The role of phytoplankton extracellular release in bacterioplankton growth of Taylor Valley Lakes, Antarctica. Antarctic Journal of the United States - 1996 Review Issue (NSF 98-28). 1998;31(2):211-212.
Takacs-Vesbach CD, Priscu JC. Bacterial growth in Antarctic lakes: The role of phytoplankton extracellular release. Bacterial growth in Antarctic lakes: The role of phytoplankton extracellular. 1996.
Takacs-Vesbach CD, Priscu JC. Responses of bacterial growth to inorganic and organic nutrient enrichment in the lakes of the dry valleys, Antarctica. Antarctic Journal of the US. 1995;30:303-305.
Tegt S. The chemical evolution of Canada Glacier melt: supraglacial and proglacial waters in Taylor Valley, Antarctica. 2002;M.S. doi:LTER.
Telling J, Anesio AM, Tranter M, et al. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Frontiers in Microbiology. 2014;5. doi:10.3389/fmicb.2014.00694.
Teufel AG, Morgan-Kiss RM. Physiological and Biochemical Adaptations of Psychrophiles. In: Extremophiles. Extremophiles. Boca Raton: CRC Press; 2018. Available at: https://www.taylorfrancis.com/books/e/9781498774932/chapters/10.1201%2F9781315154695-9.
Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM. Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biology. 2017;40(5). doi:10.1007/s00300-016-2025-8.
Teufel AG, Morgan-Kiss RM. Influence of abiotic drivers (light and nutrients) on photobiology and diversity of Antarctic lake phytoplankton communities. Department of Microbiology. 2016;Ph.D. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1468411564.
Thompson AR, Roth-Monzón AJ, Aanderud ZT, Adams BJ. Phagotrophic protists and their associates: Evidence for preferential grazing in an abiotically driven soil ecosystem. Microorganisms. 2021;9(8):1555. doi:10.3390/microorganisms9081555.
Thompson AR, Powell GS, Adams B. Provisional checklist of terrestrial heterotrophic protists from Antarctica. Antarctic Science. 2019. doi:10.1017/S0954102019000361.
Thompson LR, Sanders JG, McDonald D, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551. doi:10.1038/nature24621.
Thompson AR. Phagotrophic protists (protozoa) in Antarctic terrestrial ecosystems: Diversity, distribution, ecology, and best research practices. Polar Biology. 2021;44(8):1467-1484. doi:10.1007/s00300-021-02896-3.
Thompson AR. Heterotrophic protists as useful models for studying microbial food webs in a model soil ecosystem and the universality of complex unicellular life. Adams BJ. Department of Biology. 2019;PhD. Available at: https://www.proquest.com/docview/2310631977.
Thompson AR, Geisen S, Adams B. Shotgun metagenomics reveal a diverse assemblage of protists in a model Antarctic soil ecosystem. Environmental Microbiology. 2020. doi:10.1111/1462-2920.15198.
Thurman J, Parry J, Hill PJ, et al. Microbial dynamics and flagellate grazing during transition to winter in Lakes Hoare and Bonney, Antarctica. FEMS Microbiology Ecology. 2012;82(2):449 - 458. doi:10.1111/j.1574-6941.2012.01423.x.
Tomasel CM, Adams B, Tomasel FG, Wall DH. The Life Cycle of the Antarctic Nematode Plectus murrayi Under Laboratory Conditions. Journal of nematology. 2013;45(1):39-42. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625130/.
Torrens CL, Gooseff MN, McKnight DM. Dissolved organic carbon chemostasis in Antarctic polar desert streams. Journal of Geophysical Research: Biogeosciences. 2022;127(7):e2021JG006649. doi:10.1029/2021JG006649.
Tranter M, Bagshaw E, Fountain AG, Forman C. The biogeochemistry and hydrology of Dry Valley glaciers: is there life on Martian ice now?. In: Life in Antarctic Deserts and other Cold Dry Environments. Life in Antarctic Deserts and other Cold Dry Environments. Cambridge: Cambridge University Press; 2010:195-220.
Tranter M, Fountain AG, W. Lyons B, Nylen TH, Welch KA. The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology during a cool summer. Annals of Glaciology. 2005;40:15-19. doi:LTER.
Tranter M, Fountain AG, Fritsen CH, et al. Perturbation of hydrochemical conditions in natural microcosms entombed within Antarctic ice. Ice and Climate News. 2005;6:22-23.

Pages