McMurdo LTER Publications

Export 48 results:
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Campbell IB, Claridge GGC, Campbell DI, Balks MR. The Soil Environment of the McMurdo Dry Valleys, Antarctica. In: Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica.Vol 72. Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica.; 1998:297-322.
Carey M, Garone P, Howkins A, et al. Forum: Climate Change and Environmental History. Environmental History. 2014;19(2):281 - 364. doi:10.1093/envhis/emu004.
Cariani ZE, Morgan-Kiss RM. Impact of simulated polar night on Antarctic mixotrophic and strict photoautotrophic phytoplankton. Department of Microbiology. 2019;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1547204599969081.
Carmichael JD, Pettit E, Hoffman M, Fountain AG, Hallet B. Seismic multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica. Journal of Geophysical Research: Earth Surface. 2012;117(F3). doi:10.1029/2011JF002221.
Carpenter S, Lundberg P, Mangel M, et al. Accelerate Synthesis in Ecology and Environmental Sciences. Bioscience. 2009;59:699-701. doi:LTER.
Carr CG, Carmichael JD, Pettit EC. Wintertime brine discharge at the surface of a cold polar glacier and the unexpected absence of associated seismicity. Journal of Geophysical Research: Earth Surface. 2022;127(3). doi:10.1029/2021JF006325.
Carr CG, Carmichael JD, Pettit EC, Truffer M. The influence of environmental microseismicity on detection and interpretation of small-magnitude events in a polar glacier setting. Journal of Glaciology. 2020. doi:10.1017/jog.2020.48.
Caruso T, Hogg ID, Nielsen UN, et al. Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals. Communications Biology. 2019;2(1). doi:10.1038/s42003-018-0260-y.
Castendyk D, Dugan HA, Gallagher HA, et al. Barotropic seiches in a perennially ice-covered lake, East Antarctica. Limnology and Oceanography Letters. 2022;7(1):26 - 33. doi:10.1002/lol2.10226.
Castendyk D, Obryk MK, Leidman SZ, Gooseff MN, Hawes I. Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica. Global and Planetary Change. 2016;144:213 - 227. doi:10.1016/j.gloplacha.2016.06.007.
Castendyk D, McKnight DM, Welch KA, Niebuhr S, Jaros C. Pressure-driven, shoreline currents in a perennially ice-covered, pro-glacial lake in Antarctica, identified from a LiCl tracer injected into a pro-glacial stream. Hydrological Processes. 2015;29(9):2212 - 2231. doi:10.1002/hyp.v29.910.1002/hyp.10352.
Cawley K. Microbial interactions with dissolved organic matter in saline natural waters. 2010. doi:LTER.
Cawley KM, McKnight DM, Miller PL, et al. Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica. Environmental Research Letters. 2013;8(4):045015. doi:10.1088/1748-9326/8/4/045015.
Chapin FS, McGuire A, Nuttall M, et al. Polar Systems. In: Hassan R, Scholes R, Ash N Millennium Ecosystem Assessment. Current State and Trends: Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment. Current State and Trends: Findings of the Condition and Trends Working Group. Island Press; 2005:717-743. doi:LTER.
Chatfield E. Regrowth of cyanobacterial mats in Greek Creek and the impact of ecotourism. 2001;M.S. doi:LTER.
Chignell SM, Myers M, Howkins A, Fountain AG. Research sites get closer to field camps over time: Informing environmental management through a geospatial analysis of science in the McMurdo Dry Valleys, Antarctica. PLOS ONE. 2021;16(11):e0257950. doi:10.1371/journal.pone.0257950.
Chignell SM, Howkins A, Gullett P, Fountain AG. Patterns of interdisciplinary collaboration resemble biogeochemical relationships in the McMurdo Dry Valleys, Antarctica: A historical social network analysis of science, 1907–2016. Polar Research. 2022;41:8037. doi:10.33265/polar.v41.8037.
Chown SL, Lee JE, Hughes KA, et al. Challenges to the Future Conservation of the Antarctic. Science. 2012;337(6091):158 - 159. doi:10.1126/science.1222821.
Chrismas NAM, Williamson CJ, Yallop ML, Anesio AM, Sánchez-Baracaldo P. Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Molecular Ecology. 2018;27(24):5279 - 5293. doi:10.1111/mec.14953.
Christner BC, Skidmore M, Priscu JC, Tranter M, Foreman CM. Bacteria in Subglacial Environments. In: Psychrophiles: from biodiversity to biotechnology. Psychrophiles: from biodiversity to biotechnology. New York: Springer Verlag; 2008:51-71.
Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC. Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus. 2005;174:572-584. doi:LTER.
Coleman DC, Blair JM, Elliot E, Wall DH. Soil invertebrates. In: Standard Soil Methods for Long Term Ecological Research. Standard Soil Methods for Long Term Ecological Research. New York: Oxford University Press; 1999:349-377. doi:LTER.
Collins PM. Ecotoxicity and microbial biogeochemistry of Fluoride in Antarctic soils. 2007;B.S.
Collins GE, Hogg ID, Convey P, et al. Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences. 2020. doi:10.1073/pnas.2007925117.
Conovitz PA. Active layer dynamics and hyporheic zone storage in three streams in the McMurdo Dy Valleys, Antarctica. 2000;M.S. doi:LTER.

Pages