Documentation Of The Taylor Valley Blue Boxes for season 2006/07 (aka Blue Box Bible 0607 v.1) May 2nd, 2007

Miroljub Medved Department of Earth and Environmental Sciences	Season:	2006-07
University of Illinois at Chicago	Version:	1
845 W. Taylor Street Office: 312.996.0083	Last change:	5/02/2007
medved@uic.edu		

CHANGES

Blue Box 06/07 Version:

V.1 N/A

TABLE OF CONTENT:

	nsors
1.50	1.1 Available Sensors
	1.2 Sensors, Data Logger and Programming Information
	and Manuals at the Internet.
	1.3 Field equipment diagram.
2. Bl	ue Box Field Setup
3. No	tes on changes made in November 2005
	3.1 General Hardware Changes
	3.1.1 Changes at Lake Fryxell
	3.1.2 Changes at Lake Hoare
	3.1.3 Changes at East Lobe of Lake Bonney
	3.1.4 Changes at West Lob eof Lake Bonney
	3.2 Software Changes
	3.3 Notes on Multipliers
4. Pr	ograms and Datalogger Wiring:
4 1 I	ake Fryxell
101 L	4.1.1 Wiring
	4.1.2 Program.
	4 1 3 Input storage (*6) locations
	4.1.3 Input storage (*6) locations4.1.4 Final storage array definition (*.FSL file)
4 7 T	4.1.4 Final storage array definition (*.FSL file)
4.2 L	4.1.4 Final storage array definition (*.FSL file)
4.2 L	4.1.4 Final storage array definition (*.FSL file)ake Hoare4.2.1 Wiring
4.2 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program
4.2 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations
4.2 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program
	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file)
	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring
	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring 3.3.2 Program
	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring 3.3.2 Program 3.3.3 Input storage (*6) locations
	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring 3.3.2 Program
4.3 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring 3.3.2 Program 3.3.3 Input storage (*6) locations 3.3.4 Final storage array definition (*.FSL file)
4.3 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations 4.2.4 Final storage array definition (*.FSL file) ake Bonney East Lobe 3.2.1 Wiring
4.3 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations
4.3 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations
4.3 L	 4.1.4 Final storage array definition (*.FSL file) ake Hoare 4.2.1 Wiring 4.2.2 Program 4.2.3 Input storage (*6) locations

1. Sensors

1.1 Available Sensors

SENSORS	SENSOR TYPE	Aplications	Company	Units	Deployment Date			
JENJOKJ	SENSOR TIPE	Aplications	Company	Units	Fryxell	Hoare	ELB	WLB
Surface PAR	LI190 SB Quantum	Active Radiation	LI-COR Biosciences 4421 Superior St. Lincoln, NE 68504 Phone: 800-447-3576 Fax: 402-467-2819	micromoles of quanta per second per square meter (mmol s-1 m-2)	11/17/05 23:45	11/11/05 14:10	11/26/05 10:02	11/26/05 15:12
Underwater PAR	LI-193 Spherical Quantum Sensor		LI-COR Biosciences 4421 Superior St. Lincoln, NE 68504 Phone: 800-447-3576 Fax: 402-467-2819		10/24/04 21:00	11/24/04 13:50	11/16/05 16:45	11/20/05
Ablation Transducer (pressure transducer)	Druck Pressure Transducer PDCR 1830 or 1230; Keller	Continuous lake ice	Druck Incorporated (203) 746-0400 <mark>Keller</mark> ?	cm	11/19//05	2000/01 ?	19/11/04	17/11/04
Lake Level (Stage) Transducer	Pressure Transducer Series 169/173 only at Lake Hoare.	Continuous lake level measurements	Druck Incorporated (203) 746-0400		21/11/04	17/11/04	19/11/04	N/A

• in instruction manual for LI 190SB quantum Sensor (Campbell Scientific, revision: 6/9) in Table 1 "Multiplier Required for Flux Density and Total Fluxes" (pg. 2), units are wrong (mmole s⁻¹ m⁻² or mmole m⁻²). Units should be mmole s-1 m⁻²/ mV & mmole m-2/mV.

• Units for Surface PAR output value are in mV. After applying multiplier (during data logging or after we download data) we end up with mmole $s^{-1} m^{-2}$ or mmole m^{-2} for Total Fluxes.

• The Keller Pressure Transducers still remained at Lake Hoare, and program for Lake Hoare is different than the other programs. Druck Pressure Transducers are presented at all other lakes (Fryxell, ELB & WLB).

1.2 Sensors, Data Logger and Programming Information and Manuals at the Internet

Sensor details: http://www.licor.com/env/Products/Sensors/190/li190_description.jsp

Instruction Manual from Campbell Scientific: http://www.campbellsci.com/documents/manuals/li190sb.pdf

(2) LI-193 Spherical Quantum Sensor

Sensor details: http://www.licor.com/env/Products/Sensors/193UW/li193_description.jsp http://www.licor.com/env/PDF_Files/193SA.pdf

(3) Druck's Pressure Transducer (Lake Fry, ELB and WLB)

Sensor details: http://www.gesensing.com/products/resources/datasheets/PDSA065june02.pdf

Instruction Manual from Campbell Scientific http://www.campbellsci.com/documents/manuals/cs420-1.pdf

Note: Ablation Transducer (frequently called Pressure Transducer) and Lake Level Transducer (also known as Stage Transducer) are both the same type of transducers. The only difference between two is that they are differently programmed – one for measuring the Ice ablation and the other for measuring the lake level.

(4) Keller Pressure Transducer 173 (only at Lake Hoare)

Sensor details: N/A

Instruction Manual from Campbell Scientific www.campbellsci.ca/Catalogue/KELLER169 173 Man.pdf

(5) CR10X Data Logger

Measurements and Control Module Operator's Manual http://www.campbellsci.com/documents/manuals/cr10x-ov.pdf

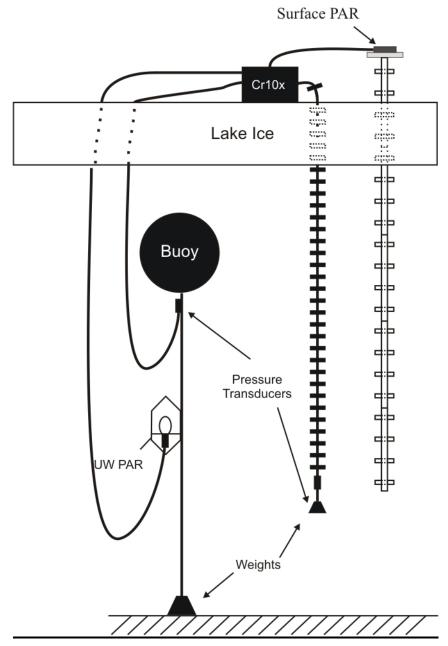
CR10X Specifications

http://www.campbellsci.com/documents/lit/s_cr10x.pdf

CR10X Brochure

http://www.campbellsci.com/documents/lit/b_cr10x.pdf

(6) LoggerNet Instructions


Logger Net Datalogger Support Software http://www.campbellsci.com/loggernet3x

LoggerNet Users Manual 3.3 http://www.campbellsci.com/documents/manuals/loggernet.pdf

LoggerNet Users Manual 2.1b

http://www.campbellsci.com.au/documents/manuals/loggernet2-1.pdf

1.3 Diagram

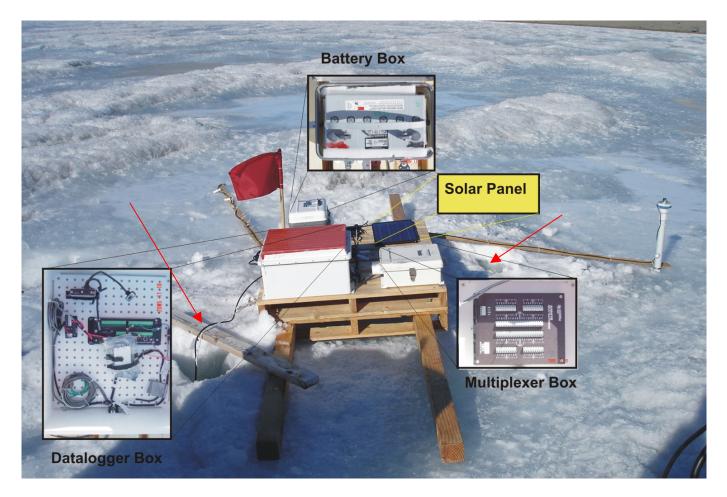


Fig.1: Lake cross-section showing buoy, data logger, position of deployed sensors and ablation stake.

UW par deployment depths measured from the surface of the ice:

Lake Fryxel:	8 m
Lake Hoare:	10 m
ELB:	10 m
WLB:	10m

2. Blue Box Filed Setup

Fig. 2: Field setup and components of a Blue Box system. Outriggers are facing main wind direction and with two anchors (marked by red arrows) to prevent box from flipping.

3. Notes on changes made in November 2006

3.1 Hardware Changes

For all Lakes:

- to prevent blue boxes from flipping over:
 - ► outriggers facing the main wind direction were added to blue box pallets.
 - ► blue box pallets were further stabilized by two anchors.
- uw par were attached to buoy at the fixed distance from pressure transducer.
- short wooden poll with red flag were added to each blue box pallet.
- all 4" pvc pipes installed last year/season were taken out.

Sensor replacement/installation:

• uw par were replaced at Lake Fryxell and Lake Hoare according to two-year schedule established by John Priscue.

NOTE:

- Underwater sonars were late (delivered a few days before the end of our fieldwork deployment). They will be deployed in 2007-08 season. Miroljub took one to UIC to make and test a program, other three were left in McMurdo.
- Miroljub gave old laminated uw par labels from Fryxell & Hoare to John Priscue at Lake Bonney. Whoever change uw par should keep doing this because JP traditionally keeps track of all uw par sensors from the beginning of the LTER project.
- Laminated labels for new uw sensors were left in a data logger box attached to uw par cable.

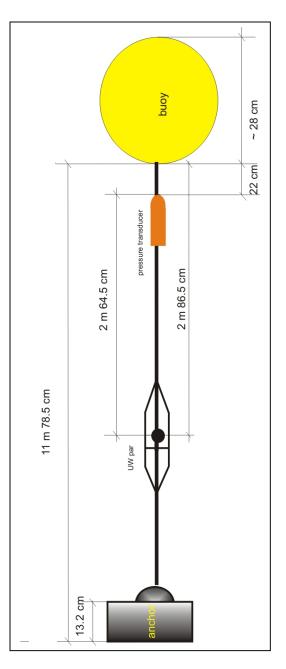
• We installed 4" pipes for securing a stage transducer cable from being cut during ice drilling. However, it shows that these pipes could produce more problems than being helpful. At lake Hoare, one pipe slip through the ice (although it was secured by 2x4 - see figure 4 below). In a case that buoy needs to be taken out and sensors replaced, it's

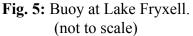
requires more resources and stage transducer must be freed from buoy (cut attachment, secure from freezing and pulled twice through the buoy).

Fig. 4: Images of top & bottom part of 4 " pvc pipe at the Lake Hoare that slipped through the ice. Miroljub made a special hook to ketch it and pull it out.

3.1.1 Lake Fryxell

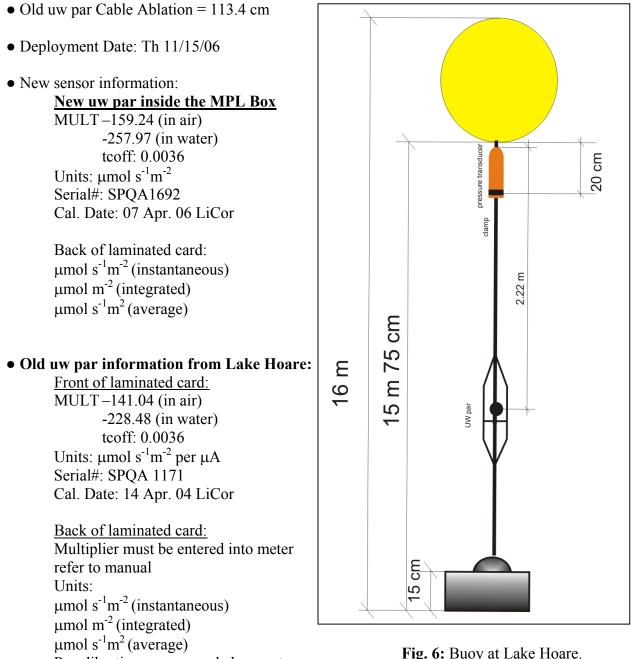
- Melted out uw par and deployed new one and attached to buoy (Fig. 5).
- Old uw par Cable ablation = 2 m 35 cm
- Deployment Date: 11/25/2006
- New sensor information:


• New UW par – Lake Fryxell MULT –146.20 (in air) -236.84 (in water) tcoff: 0.0036 Units: µmol s⁻¹m⁻² Serial#: SPQA 1861 Cal. Date: 07 Apr. 06 LiCor


Back: of laminated card: μ mol s⁻¹m⁻² (instantaneous) μ mol m⁻² (integrated) μ mol s⁻¹m² (average)

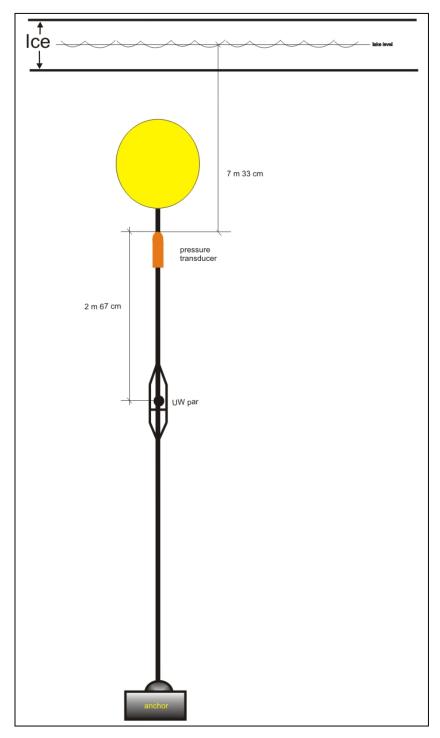
• Old uw par information from Lake Fryxell

<u>Front of laminated card:</u> MULT -147.28 (in air) -238.59 (in water) tcoff: 0.0036 Units: μmol s⁻¹m⁻² per μA Serial#: SPQA 2869 Cal. Date: 14 Apr. 04 LiCor


Back of laminated card: Multiplier must be entered into meter refer to manual Units: μ mol s⁻¹m⁻² (instantaneous) μ mol m⁻² (integrated) μ mol s⁻¹m² (average) Recalibration recommended every to year

3.1.2 Lake Hoare

• Melted out uw par, deployed new one and attached to buoy (Fig. 6).



Recalibration recommended every to year

Fig. 6: Buoy at Lake Hoare. (not to scale)

3.1.3 East Lake of Lake Bonney

- Melted out uw par and attached to the buoy (Fig. 7).
- Old UW par Cable Ablation = 134 cm.

Fig. 7: Buoy at East Lobe of Lake Bonney. (not to scale)

3.1.4 West Lobe of Lake BonneyLB

- Melted out uw par and attached to the buoy (Fig.8).
- UW par Cable Ablation = 16 cm

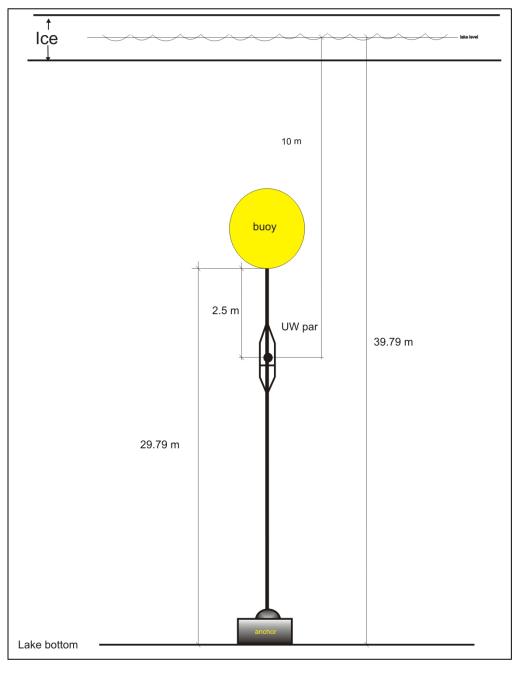


Fig. 8: Buoy at East Lobe of Lake Bonney. (not to scale)

3.2 Software Changes

• N/A

3.2.1 Note on Multipliers

In the program running at Blue Boxes, we always have multiplier value of:

- 100 for UW par (or "-100" depending on how we wired when we installed sensor).
- 200 for Surface PAR.

There are two reasons why we chose this approach:

1. This is the safest and easiest way to go. We deploy the real multiplier later during the data post processing. This way, we can always backtrack and figure out what the multiplier should be by only having the sensor serial numbers deployed.

2. Those are round values that are close to what the real multipliers are.

Below Programs an Wiring are the same as last season/year/blue box bible.

4. Programs and CR10x Data logger Wiring

NOTE:

<u>For all lakes</u>: There were no changes in program or wiring from last year.

4.1 Lake Fryxell

......3.1.1 Wiring

Wiring at Lake Fryxell Blue Box after rebuilding Blue Boxes in Nov 2005

CR10X wiring

Stage transducer (instrument with desiccant-filled vent tube)

Red	E1
Orange	H5
Black	L5
Yellow	H6
Blue	L6
White	AG (any one)
Clear	G (any one)

Ablation transducer (instrument with desiccant-filled vent tube)

Red	E1
Orange	H1
Black	L1
Yellow	H2
Blue	L2
White	AG (any one)
Clear	G (any one)

		Surface PA	R
Underwa	ter PAR	Black	4L
Green	3L	Red	4H
Blue	3Н	Clear	G
		Jumper Wir	re from Black 4L to AG

AM416 Relay Multiplexer:

Two gray wires inside the multiplexer box are not connected:

4.1.2 Program

;{CR10}

*Table 1 Program

01: 60 Execution Interval (seconds)

; MEASURE ABLATION SENSOR

- 1: Full Bridge w/mv Excit (P9)
- 1:1 Reps
- 2: 5 2500 mV Slow Ex Range
- 3: 3 25 mV Slow Br Range
- 4:1 DIFF Channel
- 5:1 Excite all reps w/Exchan 1
- 6: 2500 mV Excitation
- 7:1 Loc [ablat_cm]
- 8: 102.22 Mult
- 9: 0.0 Offset

;MEASURE UNDERWATER LIGHT

- 2: Volt (Diff) (P2)
- 1:1 Reps
- 2: 2 7.5 mV Slow Range
- 3: 3 DIFF Channel
- 4:2 Loc [uwlight]
- 5: -100 Mult
- 6: 0.0 Offset

; MEASURE SURFACE LIGHT SENSOR (QUANTUM)

- 3: Volt (Diff) (P2)
- 1:1 Reps
- 2:3 25 mV Slow Range
- 3:4 DIFF Channel
- 4:3 Loc [par
- 5: 200 Mult
- 6: 0.0 Offset

; MEASURE BATTERY VOLTAGE

4: Batt Voltage (P10)

1:4 Loc [battvolts]

; MEASURE STAGE TRANSDUCER SENSOR

1

- 5: Full Bridge w/mv Excit (P9)
- 1:1 Reps

- 2: 5 2500 mV Slow Ex Range
- 3: 3 25 mV Slow Br Range
- 4: 5 DIFF Channel
- 5:1 Excite all reps w/Exchan 1
- 6: 2500 mV Excitation
- 7:5 Loc [stage_cm]
- 8: 102.12 Mult
- 9: 0.0 Offset

TIME INTERVAL SETUP FOR 20 MINUTES

- 6: If time is (P92)
- 1:0 Minutes (Seconds --) into a
- 2: 20 Interval (same units as above)
- 3: 10 Set Output Flag High

; SETUP STORAGE AREA & ARRY ID TO 1

- 7: Set Active Storage Area (P80)
- 1:1 Final Storage Area 1
- 2:1 Array ID

; SETUP TIME

- 8: Real Time (P77)
- 1: 1220 Year, Day, Hour/Minute (midnight = 2400)
- 9: Resolution (P78)
- 1:1 High Resolution

;CALCULATE AVERAGE FOR ABLAT_CM

- 10: Average (P71)
- 1:1 Reps
- 2:1 Loc [ablat_cm]

;CALCULATE AVERAGE FOR STAGE_CM

- 11: Average (P71)
- 1:1 Reps
- 2:5 Loc [stage_cm]
- 12: Resolution (P78)
- 1:0 Low Resolution

;CALCULATE AVERAGE FOR, UWLIGHTS, PAR, AND BATTERY VOLTS 13: Average (P71)

- 1:3 Reps
- 2:2 Loc [uwlight]

; COMUNICATE WITH STORAGE AREA

14: Serial Out (P96)

Storage Module 1:71

*Table 2 Program 02: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

4.1.3 Input Locations-

1 abla	at_cm 511
2 uw	light 111
3 par	111
4 bat	tvolts 1 1 1
5 stag	ge_cm 111
6	100
7	100
8	0 0 0
9	0 0 0
10	0 0 0
11	0 0 0
12	0 0 0
13	0 0 0
14	0 0 0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	000
$\begin{array}{c} 20 \\ 20 \\ 21 \\ 0 \\ 0 \\ 0 \\ 22 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	18	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	000
$\begin{array}{c} 22 \\ \hline 23 \\ \hline 0 \\ 24 \\ \hline 0 \\ 25 \\ \hline 0 \\ 26 \\ \hline 0 \\ 27 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	20	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	000
$\begin{array}{c} 24 \\ 25 \\ 26 \\ 27 \\ 27 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	22	000
$ \begin{array}{c} 25 \\ 25 \\ 26 \\ 27 \\ 000 \end{array} $	23	000
26 0 0 0 27 0 0 0	24	000
27 0 0 0	25	000
	26	000
28000	27	000
	28	000

-Program Security-0000 0000 0000 -Mode 4--Final Storage Area 2-0 -DLD File Labels-0 **Final Storage Labels-**0,1,22950 1,Year RTM,19867 1,Day RTM 1,Hour_Minute_RTM 2,ablat cm AVG~1,1315 3,uwlight_AVG~2,23697 3,par AVG~3 3, battvolts_AVG~4 4,stage_cm_AVG~5,20053Final storage array definition

4.1.4 Final storage array definition (*.FSL file)

Estimated Total Final Storage Locations used per day 792

6 stage_cm_AVG H 7 uwlight_AVG L 8 par_AVG L 9 battvolts_AVG L

Final Storage Label File for: FRL PROGRAM UPDATED FOR PAR (QUANTUM) SENSOR NOV 2005.csi Date: 11/20/2005 Time: 16:07:00 1 Output_Table 20.00 Min 1 1 L 2 Year_RTM L 3 Day_RTM L 4 Hour_Minute_RTM L 5 ablat cm AVG H

4.2 Lake Hoare

......4.2.1 Wiring

Wiring at Lake Hoare Blue Box (after rebuilding Blue Boxes in Nov 2005)

(Multiplexer=MUX)

CR10X wiring

Stage transducer jumper wire (3 wires with black heat shrunk resistor)

Yellow	1H
Black	1L (the black stage transducer wire also goes in here, see below)
Purple	E1 (together with purple from other jumper)

Stage transducer (instrument with dessicant filled vent tube, this one will have more pink dessicant than the other)

Black	1L (the Black stage transducer jumper wire also goes here, see above)
Red	2Н
Green	2L
White	AG (any one)
Blue	G (any one)

Ablation transducer jumper wire (3 wires with black heat shrunk resistor)

Yellow	3Н
Black	3L (the black ablation transducer wire also goes in here, see below)
Purple	E1 (together with purple from other jumper)

Ablation transducer (instrument with dessicant filled vent tube, this one will have less pink dessicant than the other)

Black	3L (the Black ablation tra	ansducer jumper wire also goes here, see above)
Red	4H	
Green	4L	
White	AG (any one)	
Blue	G (any one)	this one was disconected

Mux signal cable

12V (any one)

Red 12V White C3

 Red
 5H

 White
 5L

 Black
 E2

 Green
 AG (any one)

 Clear
 G (any one)

 Mux power/reset cable
 Note: Green should be connected to AG according to BBB 04/05. However, at CR10 was connected at G (right to AG port). Because everything works properly, it was left at G when Medved rebuild blue boxes in 2006.

21

Green C2 Black G (any one) Clear G (any one)

Surface PAR

Red6HBlack6LClearGJumper Wire from Black 6L to AG

Multiplexer Wiring

Underwater light (PAR) sensor (twisted blue and green wires)

BlueSet 1, H1GreenSet 1, L1

Mux Common wires

Mux signal cable

RedCom, H1WhiteCom, L1BlackCom, L2GreenCom, H2ClearCom, Shield

Mux power/reset cable

Red12VWhiteCLKGreenRESBlackGNDClearCom, Shield

4.2.2 Program

;{CR10X} *Table 1 Program 01: 60.0000 Execution Interval (seconds) 1: Batt Voltage (P10) 1:7 Loc [volts] 2: Do (P86) Call Subroutine 1 1:1 3: Do (P86) 1:2 Call Subroutine 2 4: Volt (Diff) (P2) 1:1 Reps 25 mV Slow Range 2:3 DIFF Channel 3:6 Loc [surflight] 4:27 5:200 Mult 6: 0.0 Offset 5: Do (P86) Set Port 2 High 1:42 6: Do (P86) 1:73 Pulse Port 3 7: Volt (Diff) (P2) 1:1 Reps 2:1 2.5 mV Slow Range DIFF Channel 3:5 Loc [uwlight] 4:26 5: -100 Mult 6:0 Offset 8: Do (P86) 1:52 Set Port 2 Low 9: If time is (P92)

- 1:0 Minutes (Seconds --) into a
- 2: 20 Interval (same units as above)
- 3: 10 Set Output Flag High (Flag 0)

10: Set Active Storage Area (P80)^25311

1:1 Final Storage Area 1

2:2 Array ID

11: Real Time (P77)

1: 1220 Year, Day, Hour/Minute (midnight = 2400)

12: Average (P71)

- 1:1 Reps
- 2:4 Loc [stage_psi]
- 13: Standard Deviation (P82)
- 1:1 Reps
- 2: 4 Sample Loc [stage_psi]
- 14: Resolution (P78)
- 1:1 High Resolution
- 15: Average (P71)
- 1:1 Reps
- 2: 5 Loc [stage_cm]

16: Resolution (P78)

1:0 Low Resolution

- 17: Average (P71)
- 1:2 Reps
- 2:26 Loc [uwlight]
- 18: Average (P71)
- 1:1 Reps
- 2:14 Loc [ablat_psi]
- 19: Standard Deviation (P82)1: 1 Reps
- 2: 14 Sample Loc [ablat_psi]
- 20: Resolution (P78)1: 1High Resolution

21: Average (P71)
1: 1 Reps
2: 15 Loc [ablat_cm]

22: Resolution (P78)1: 0 Low Resolution

```
23: Average (P71)
       Reps
1:1
2:7
       Loc [ volts
                  1
24: Serial Out (P96)
        Storage Module
1:71
*Table 2 Program
01: 0.0000 Execution Interval (seconds)
; SUBROUTINES RUN THE TWO PRESSURE TRANSDUCERS (DIFFERENT
MODELS THAN AT OTHER LAKES)
*Table 3 Subroutines
1: Beginning of Subroutine (P85)
       Subroutine 1
1:1
2: Full Bridge (P6)
1:1
       Reps
       25 mV Slow Range
2:3
3:1
       DIFF Channel
       Excite all reps w/Exchan 1
4:1
        mV Excitation
5:770
6:1
       Loc [ ]
7:.01
        Mult
8:0
       Offset
3: Full Bridge (P6)
       Reps
1:1
       25 mV Slow Range
2:3
3:2
       DIFF Channel
4:1
       Excite all reps w/Exchan 1
5:770
        mV Excitation
6: 2
       Loc [ ]
7:.5
       Mult
8:0
       Offset
4: Z=X/Y (P38)
       X Loc [_____]
1:2
       Y Loc [_____]
Z Loc [_____]
2:1
3:3
```

5: Z=X*F (P37) X Loc [_____] 1:3 2:.52 F Z Loc [stage psi] 3:4 6: Z=X*F (P37) X Loc [_____] 1:3 2:36.5 F Z Loc [stage cm] 3:5 7: End (P95) 8: Beginning of Subroutine (P85) 1:2 Subroutine 2 9: Full Bridge (P6) 1:1 Reps 25 mV Slow Range 2:3 DIFF Channel 3:3 Excite all reps w/Exchan 1 4:1 5:770 mV Excitation 6:11 Loc [_____] 7:.01 Mult 8:0 Offset 10: Full Bridge (P6) 1:1 Reps 2:3 25 mV Slow Range 3:4 DIFF Channel 4:1 Excite all reps w/Exchan 1 5:770 mV Excitation 6: 12 Loc [] 7:.5 Mult 8:0 Offset 11: Z=X/Y (P38) X Loc [_____] 1:12 2:11 Y Loc [_____] 3:13 Z Loc [_____] 12: Z=X*F (P37) X Loc [_____] 1:13 2:.52 F Z Loc [ablat psi] 3:14

13: Z=X*F (P37)

Lake Hoare Program

1: 13 X Loc [_____] 2: 36.5 F 3: 15 Z Loc [ablat_cm]

14: End (P95)

End Program

4.2.3 Input storage (*6) locations

-Program Security-0 0 0 -Mode 4--Final Storage Area 2-0 -CR10X ID-0 -CR10X Power Up-0 -CR10X Compile Setting-0 -CR10X RS-232 Setting--1 -DLD File Labels-0 -Final Storage Labels-0,2,25311 1,Year RTM,2775 1,Day_RTM 1,Hour Minute RTM 2, stage psi AVG~4,14666 3, stage psi STD~4, 24383 4, stage cm AVG~5, 5591 5,uwlight_AVG~26,19363 5, surflight AVG~27 6,ablat psi AVG~14,7360 7,ablat psi STD~14,25199 8,ablat cm AVG~15,6446 9, volts AVG~7, 7857

......4.2.4 Final storage array definition

Final Storage Label File for: LAKE HOARE PROGRAM FOR UPDATED BLUE BOX.csi Date: 11/9/2005 Time: 15:31:57 2 Output_Table 20.00 Min 12L 2 Year RTM L 3 Day RTM L 4 Hour Minute RTM L 5 stage psi AVG L 6 stage psi STD L 7 stage cm AVG H 8 uwlight_AVG L 9 surflight AVG L 10 ablat_psi_AVG L 11 ablat psi STD L 12 ablat cm AVG H

13 volts_AVG L

Estimated Total Final Storage Locations used per day 1080

4.3 Lake Bonney East Lobe

......4.3.1 Wiring

Wiring at Lake Bonney East Blue Box after rebuilding Blue Box in Nov 2005

CR10 wiring

Stage transducer (instrument with dessicant-filled vent tube)

E1
H5
L5
H6
L6
AG (any one)
G (any one)

Ablation transducer (instrument with dessicant-filled vent tube)

Red	E1
Orange	H1
Black	L1
Yellow	H2
Blue	L2
White	AG (any one)
Clear	G (any one)

Underwater PAR

Green	3L
Blue	3Н
Jump Wire	from 3L to AG

Surface PAR

Black4LRed4HJumpe rWirefrom 4L to AG

Multiplexer Box

Mux Cable # 1

Green RES White CLK Black GND Red 12V Clear Shield COM

Note: Three mV adapters are attached at multiplexer (R=1210OHM)					
1 st at 3	2 nd at 2	3 rd at 1			
Blue H1	Blue H1	Blue H1			
Green L1	Green L1	Green L1			

Mux Cable # 2:

Green	COM H2
White	COM L1
Black	COM L2
Red	COM H1
Clear	Shield COM

......4.3.2 Program

;{CR10X}

;This is a program for East Lake Bonney with new surface light sensor installed (PAR) and compiled for CR10X datalogger

*Table 1 Program 01: 60.0000 Execution Interval (seconds)

; MEASURE ABLATION SENSOR

- 1: Full Bridge w/mv Excit (P9)
- 1:1 Reps
- 2: 5 2500 mV Slow Ex Range
- 3: 3 25 mV Slow Br Range
- 4:1 DIFF Channel
- 5: 1 Excite all reps w/Exchan 1
- 6: 2500 mV Excitation
- 7:1 Loc [ablat_cm]
- 8: 102.21 Mult
- 9: 0.0 Offset

; MEASURE UNDERVATER LIGHT (UW PAR)

- 2: Volt (Diff) (P2)
- 1:1 Reps
- 2: 2 7.5 mV Slow Range
- 3: 3 DIFF Channel
- 4: 2 Loc [uwlight]
- 5: -100 Mult
- 6: 0.0 Offset

;MEASURE SURFACE LIGHT (PAR)

- 3: Volt (Diff) (P2)
- 1:1 Reps
- 2:3 25 mV Slow Range
- 3:4 DIFF Channel
- 4:3 Loc [par]
- 5: 200 Mult
- 6: 0.0 Offset

;MEASURE BATTERY VOLTAGE

4: Batt Voltage (P10)

1:4 Loc [battvolts]

; MEASURE STAGE TRANSDUCER VOLTAGE

5: Full Bridge w/mv Excit (P9)

ELB Program

- 1:1 Reps
- 2: 5 2500 mV Slow Ex Range
- 3: 3 25 mV Slow Br Range
- 4: 5 DIFF Channel
- 5: 1 Excite all reps w/Exchan 1
- 6: 2500 mV Excitation
- 7: 5 Loc [stage_cm]
- 8: 101.53 Mult
- 9: 0.0 Offset

; SETUP 20 MINUTES INTERVAL TIME

- 6: If time is (P92)
- 1:0 Minutes (Seconds --) into a
- 2: 20 Interval (same units as above)
- 3: 10 Set Output Flag High

; SETUP STORAGE AREA AND ARRAY ID

- 7: Set Active Storage Area (P80)
- 1:1 Final Storage Area 1
- 2:3 Array ID

8: Real Time (P77)

- 1: 1220 Year, Day, Hour/Minute (midnight = 2400)
- 9: Resolution (P78)
- 1:1 High Resolution

;MEASURE AVERAGE ABLATION SENSOR

- 10: Average (P71)
- 1:1 Reps
- 2:1 Loc [ablat_cm]

;MEASURE AVERAGE STAGE TRANSDUCER

- 11: Average (P71)
- 1:1 Reps
- 2:5 Loc [stage_cm]
- 12: Resolution (P78)
- 1:0 Low Resolution

;MEASURE AVERAGE FRO UNDERVATER LIGHT, SURFACE LIGHT AND BATTERY VOLTAGE (REPS 3)

- 13: Average (P71)
- 1:3 Reps
- 2: 2 Loc [uwlight]

;COMMUNICATE WITH STORAGE MODULE (7)

14: Serial Out (P96)

Storage Module 1:71

*Table 2 Program 01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

4.3.3 Input storage (*6) locations

T (T (*
-Input Locations-
1 ablat cm 111
2 uwlight 111
3 par 111
4 battvolts 1 1 1
5 stage_cm 111
6000
7 000
8 000
9 000
10000
11 000
12 0 0 0
13 000
14 000

15	0)	0	0
16	0)	0	0
17	()	0	0
18	()	0	0
19	()	0	0
20	()	0	0
21	()	0	0
22	0)	0	0
23	()	0	0
24	0)	0	0
25	0)	0	0
26	0)	0	0
27	0)	0	0
28	0)	0	0

-Program Security-0000 0000 0000 -Mode 4--Final Storage Area 2-0 -DLD File Labels-0 -Final Storage Labels-0,3,1744 1,Year_RTM,25760 1,Day RTM 1,Hour_Minute_RTM 2,ablat cm AVG~1,25466 3,stage_cm_AVG~5,32453 4,uwlight_AVG~2,23865 4, par AVG~3 4, battvolts AVG~4

Final Storage Label File for: NEW BYE PROGRAM WITH SURFACE PAR INSTALLED ON NOV 2005.csi Date: 11/25/2005 Time: 18:43:28

3 Output_Table 20.00 Min 1 3 L 2 Year_RTM L 3 Day_RTM L 4 Hour_Minute_RTM L 5 ablat_cm_AVG H 6 stage_cm_AVG H 7 uwlight_AVG L 8 par_AVG L 9 battvolts_AVG L

Estimated Total Final Storage Locations used per day 792

4.4 Lake Bonney West Lobe

......4.4.1 Wiring

Wiring at Lake Bonney West Blue Box after rebuilding Blue Boxes in Nov 20051

CR10X wiring

Ablation transducer (instrument with dessicant filled vent tube)

Red	E1
Orange	H1
Black	L1
Yellow	H2
Blue	L2
White	AG (any one)
Clear	G (any one)

Underwater PAR

Green	3L
Blue	3Н

Surface PAR

Black 4L Red 4H Jump wire from Black 4L to AG

Multiplexer Box

Present, but not connected to CR10X.

Mux Cable # 1:

Connection at CR10X: White C3 Green C2 Black G Clear G (b/w Com 11-12) Red 12V

Mux Cable # 2

Connection at CR10X: White L5

Green disconnected Black disconnected Clear G Red H5 **Note:** uw par has jumper wire at this CR10X. Probably this PAR sensor were purchased from LiCor directly; LiCor PAR sensor purchased from Campbell have them build into the lines.

Note: Mux cable wiring description wasn't presented in BBB 04/05. Meda just transfer wiring from old Blue Box to the new Blue Box. Wiring description below was the same he found it at the field. This wiring needs to be double-checked.

Connection at AM 416

Clear shield COM (b/w 10-11) Green res White clk Black gnd Red 12V

Connection at AM 416

Clear shield Green COM H2 White COM L1 (b/w 7-8) Black COM L2 (b/w 10-11) Red disconnected

......4.4.2 Program

;{CR10X}

BONNEY WEST PROGRAM

; this is the same program from 2004 compiled for CR10x

;{CR10X} Change existing program on 11/26/05

;

*Table 1 Program

01: 60.0000 Execution Interval (seconds)

- ; MEASURE ABLATION SENSOR
- 1: Full Bridge w/mv Excit (P9)
- 1:1 Reps
- 2: 5 2500 mV Slow Ex Range
- 3: 3 25 mV Slow Br Range
- 4:1 DIFF Channel
- 5:1 Excite all reps w/Exchan 1
- 6: 2500 mV Excitation
- 7:1 Loc [ablat_cm]
- 8: 101.86 Mult
- 9: 0.0 Offset

;MEASURE UNDERWATER LIGHT

- 2: Volt (Diff) (P2)
- 1:1 Reps
- 2: 2 7.5 mV Slow Range
- 3: 3 DIFF Channel
- 4: 2 Loc [uwlight]
- 5: -100 Mult
- 6: 0.0 Offset

;MEASURE SURFACE LIGHT SENSOR (QUANTUM) - SURFACE PAR 3: Volt (Diff) (P2)

- 1:1 Reps
- 2:3 25 mV Slow Range
- 3:4 DIFF Channel
- 4:3 Loc [par
- 5: 200 Mult
- 6: 0.0 Offset

; MEASURE BATTERY WOLTAGE

1

- 4: Batt Voltage (P10)
- 1:4 Loc [battvolts]

WLB Program

; TIME INTERVAL SETUP FOR 20 KMINUTES

- 5: If time is (P92)
- 1:0 Minutes (Seconds --) into a
- 2: 20 Interval (same units as above)
- 3: 10 Set Output Flag High

SETUP STORAGE AREA AND ARREY ID TO 4

- 6: Set Active Storage Area (P80)
- 1:1 Final Storage Area 1
- 2:4 Array ID
- 7: Real Time (P77)
- 1: 1220 Year, Day, Hour/Minute (midnight = 2400)
- 8: Resolution (P78)
- 1:1 High Resolution

; CALCULATE AVERAGE FOR ABLATION SENSOR

- 9: Average (P71)
- 1:1 Reps
- 2:1 Loc [ablat_cm]
- 10: Resolution (P78)
- 1:0 Low Resolution

;CALCULATE AVERAGE FOR UNDERWATER LIGHT, PAR, AND BATTERY VOLTS (REPS 3)

- 11: Average (P71)
- 1:3 Reps
- 2:2 Loc [uwlight]

; COMUNICATE WITH STORAGE MODULE (7)

- 12: Serial Out (P96)
- 1:71 Storage Module

*Table 2 Program

01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

4.4.3 Input storage (*6) locations

-Input Locations-
1 ablat cm 111
2 uwlight 111
3 par 111
4 battvolts 1 1 1
5000
6000
7 000
8 000
9 000
10000
11 000
12 0 0 0
13 000
14 0 0 0

15	0	0 0
16	0	0 0
17	0	0 0
18	0	0 0
19	0	0 0
20	0	00
21	0	00
22	0	0 0
23	0	0 0
24	0	0 0
25	0	0.0
26	0	0.0
27	0	0.0
28	0	00
-0	0	00

-Program Security-0000 0000 0000 -Mode 4--Final Storage Area 2-0 -CR10X ID-0 -CR10X Power Up-3 -CR10X Compile Setting-3 -CR10X RS-232 Setting--1 -DLD File Labels-0 -Final Storage Labels-0,4,14092 1,Year_RTM,3758 1,Day_RTM 1,Hour Minute RTM 2,ablat cm AVG~1,9773 3,uwlight_AVG~2,11901 3,par_AVG~3 3, battvolts AVG~4

4.4.4 Final storage array definition

Final Storage Label File for: NEW BYW PROGRAM INSTALLED NOV 2005 NO MUX.csi
Date: 11/25/2005
Time: 20:52:39
4 Output_Table 20.00 Min
1 4 L
2 Year_RTM L
3 Day_RTM L
4 Hour_Minute_RTM L
5 ablat_cm_AVG H
6 uwlight_AVG L
7 par_AVG L

8 battvolts AVG L

Estimated Total Final Storage Locations used per day 648