McMurdo LTER Publications
Export 42 results:
Author Title Type [ Year
Filters: First Letter Of Last Name is M and Author is Rachael M. Morgan-Kiss [Clear All Filters]
Structure and composition of the photochemical apparatus of the Antarctic green alga Chlamydomonas subcaudata. Photosynthesis Research - Regular Paper. 1998;56(3):303-314.
. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbial and Molecular Biology Review. 2006;70(1):222-252. doi:10.1128/MMBR.70.1.222-252.2006.
. Origin and tentative identification of tri to pentaunsaturated ketones in sediments from Lake Fryxell, East Antarctica. Organic Geochemistry. 2010;41(4):386 - 397. doi:10.1016/j.orggeochem.2009.12.004.
. Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. The ISME Journal. 2011;5(9):1559 - 1564. doi:10.1038/ismej.2011.23.
. Diversity and Expression of RubisCO Genes in a Perennially Ice-Covered Antarctic Lake during the Polar Night Transition. Applied and Environmental Microbiology. 2012;78(12):4358-4366. Available at: http://aem.asm.org/content/78/12/4358.short.
. Evidence of form II RubisCO ( cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology. 2012;82(2):491 - 500. doi:10.1111/j.1574-6941.2012.01431.x.
. Ciliate diversity, community structure and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica. Biological Bulleting. 2014;227(2):175-190.
. Environmental impacts on RubisCO from green algal laboratory isolates to Antarctic lake communities. Department of Microbiology. 2014;Ph.D. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1407056783.
. Influence of abiotic drivers (light and nutrients) on photobiology and diversity of Antarctic lake phytoplankton communities. Department of Microbiology. 2016;Ph.D. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1468411564.
. Influence of environmental drivers and interactions on the microbial community structures in permanently stratified meromictic Antarctic lakes. Department of Microbiology. 2016;Ph.D. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1469757316.
. Microbial Community Dynamics in Two Polar Extremes: The Lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem. BioScience. 2016;66(10):829 - 847. doi:10.1093/biosci/biw103.
. Photoadaptation to the polar night by phytoplankton in a permanently ice-covered Antarctic lake. Limnology and Oceanography. 2016;61(1). doi:10.1002/lno.10107.
. Responses of Antarctic Marine and Freshwater Ecosystems to Changing Ice Conditions. BioScience. 2016;66(10):864 - 879. doi:10.1093/biosci/biw109.
Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake. . Applied and Environmental Microbiology. 2016;82(12):3659 - 3670. doi:10.1128/AEM.00478-16.
. Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biology. 2017;40(5). doi:10.1007/s00300-016-2025-8.
. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae). . Journal of Phycology. 2017;53(4). doi:10.1111/jpy.12550.
. Antarctic Chlamydomonas strains C. sp. UWO241 and ICE-MDV exhibit differential restructuring of the photosynthetic apparatus in response to iron. Department of Microbiology. 2018;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1525455621778836.
. Physiological and Biochemical Adaptations of Psychrophiles. In: Extremophiles. Extremophiles. Boca Raton: CRC Press; 2018. Available at: https://www.taylorfrancis.com/books/e/9781498774932/chapters/10.1201%2F9781315154695-9.
. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynthesis Research. 2019;9(2). doi:10.1007/s11120-019-00621-0.
Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Science of the Total Environment. 2019;696:134001. doi:10.1016/j.scitotenv.2019.134001.
. Drivers of protistan community autotrophy and heterotrophy in chemically stratified Antarctic lakes. Aquatic Microbial Ecology. 2019;82(3):225 - 239. doi:10.3354/ame01891.
. Impact of simulated polar night on Antarctic mixotrophic and strict photoautotrophic phytoplankton. Department of Microbiology. 2019;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1547204599969081.
. Influence of environmental drivers and potential interactions on the distribution of microbial communities from three permanently stratified Antarctic lakes. Frontiers in Microbiology. 2019;10. doi:10.3389/fmicb.2019.01067.
. Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity. Plant Physiology. 2020. doi:10.1104/pp.19.01280.
Glycerol is an osmoprotectant in two Antarctic Chlamydomonas species from an ice-covered saline lake and is synthesized by an unusual bidomain enzyme. Frontiers in Plant Science. 2020;11. doi:10.3389/fpls.2020.01259.
.