McMurdo LTER Publications

Export 215 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is G  [Clear All Filters]
2022
Castendyk D, Dugan HA, Gallagher HA, et al. Barotropic seiches in a perennially ice-covered lake, East Antarctica. Limnology and Oceanography Letters. 2022;7(1):26 - 33. doi:10.1002/lol2.10226.
Hudson AR, Peters DPC, Blair JM, et al. Cross-site comparisons of dryland ecosystem response to climate change in the US Long-Term Ecological Research Network. BioScience. 2022. doi:10.1093/biosci/biab134.
Hudson AR, Peters DPC, Blair JM, et al. Cross-site comparisons of dryland ecosystem response to climate change in the US Long-Term Ecological Research Network. BioScience. 2022. doi:10.1093/biosci/biab134.
Hudson AR, Peters DPC, Blair JM, et al. Cross-site comparisons of dryland ecosystem response to climate change in the US Long-Term Ecological Research Network. BioScience. 2022. doi:10.1093/biosci/biab134.
Torrens CL, Gooseff MN, McKnight DM. Dissolved organic carbon chemostasis in Antarctic polar desert streams. Journal of Geophysical Research: Biogeosciences. 2022;127(7):e2021JG006649. doi:10.1029/2021JG006649.
Gooseff MN, McKnight DM, Doran PT, Fountain A. Long-term stream hydrology and meteorology of a polar desert, the McMurdo Dry Valleys, Antarctica. Hydrological Processes. 2022;36(6):e14623. doi:10.1002/hyp.14623.
Guo B, Li W, Santibáñez P, Priscu JC, Liu Y, Liu K. Organic matter distribution in the icy environments of Taylor Valley, Antarctica. Science of The Total Environment. 2022;841:156639. doi:10.1016/j.scitotenv.2022.156639.
Chignell SM, Howkins A, Gullett P, Fountain AG. Patterns of interdisciplinary collaboration resemble biogeochemical relationships in the McMurdo Dry Valleys, Antarctica: A historical social network analysis of science, 1907–2016. Polar Research. 2022;41:8037. doi:10.33265/polar.v41.8037.
Gutt J, Isla E, Xavier JC, et al. Ten scientific messages on risks and opportunities for life in the Antarctic. Antarctic Environments Portal; 2022. Available at: https://environments.aq/publications/ten-scientific-messages-on-risks-and-opportunities-for-life-in-the-antarctic/.
Gutt J, Isla E, Xavier JC, et al. Ten scientific messages on risks and opportunities for life in the Antarctic. Antarctic Environments Portal; 2022. Available at: https://environments.aq/publications/ten-scientific-messages-on-risks-and-opportunities-for-life-in-the-antarctic/.
2021
Gutt J, Isla E, Xavier JC, et al. Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews. 2021. doi:10.1111/brv.12679.
Gutt J, Isla E, Xavier JC, et al. Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews. 2021. doi:10.1111/brv.12679.
George SF, Fierer N, Levy JS, Adams B. Antarctic water tracks: Microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology. 2021;12. doi:10.3389/fmicb.2021.616730.
Gutterman WS. Causes and characteristics of electrical resistivity variability in shallow (<4 m) soils in Taylor Valley, East Antarctica. Department of Geology and Geophysics. 2021;M.S. Available at: https://digitalcommons.lsu.edu/gradschool_theses/5411.
W. Lyons B, Leslie DL, Gooseff MN. Chemical weathering in the McMurdo Dry Valleys, Antarctica. In: Hunt A, Egli M, Faybishenko B Hydrogeology, Chemical Weathering, and Soil Formation. Hydrogeology, Chemical Weathering, and Soil Formation. Hoboken, NJ: John Wiley & Sons, Inc.; 2021:205-216. doi:10.1002/9781119563952.ch11.
Iwaniec DM, Gooseff MN, Suding KN, et al. Connectivity: Insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5):e03432. doi:10.1002/ecs2.v12.510.1002/ecs2.3432.
Iwaniec DM, Gooseff MN, Suding KN, et al. Connectivity: Insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5):e03432. doi:10.1002/ecs2.v12.510.1002/ecs2.3432.
Salvatore MR, Barrett JE, Borges SR, et al. Counting carbon: Quantifying biomass in the McMurdo Dry Valleys through orbital and field observations. International Journal of Remote Sensing. 2021;42(22):8597 - 8623. doi:10.1080/01431161.2021.1981559.
Heindel RC, Darling JP, Singley JG, et al. Diatoms in hyporheic sediments trace organic matter retention and processing in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Biogeosciences. 2021;126(2):e2020JG006097. doi:10.1029/2020JG006097.
Kohler TJ, Howkins A, Sokol ER, et al. From the Heroic Age to today: What diatoms from Shackleton's Nimrod expedition can tell us about the ecological trajectory of Antarctic ponds. Limnology and Oceanography Letters. 2021. doi:10.1002/lol2.10200.
Diaz MA, Gardner CB, Welch SA, et al. Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica. Biogeosciences. 2021;18(5):1629 - 1644. doi:10.5194/bg-18-1629-2021.
Beane SJ, Gooseff MN. Hydrologic response to foehn winds in the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. Civil, Environmental, and Architectural Engineering. 2021;M.S. Available at: https://www.proquest.com/docview/2488126937.
Bergstrom AJ, Gooseff MN, Fountain AG, Hoffman M. Long‐term shifts in feedbacks among glacier surface change, melt generation, and runoff, McMurdo Dry Valleys, Antarctica. Hydrological Processes. 2021. doi:10.1002/hyp.14292.
Lumian JE, Jungblut AD, Dillon ML, et al. Metabolic capacity of the Antarctic cyanobacterium Phormidium pseudopriestleyi that sustains oxygenic photosynthesis in the presence of hydrogen sulfide. Genes. 2021;12(3):426. doi:10.3390/genes12030426.
Harms TK, Groffman PM, Aluwihare L, et al. Patterns and trends of organic matter processing and transport: Insights from the US Long-term Ecological Research Network. Climate Change Ecology. 2021;2:100025. doi:10.1016/j.ecochg.2021.100025.

Pages