Elemental stoichiometry is a useful theoretical framework for understanding the sources and controls on nutrient availability that can structure the composition, diversity, and life history of biotic communities. One such relationship, as postulated by the growth rate hypothesis (GRH), is that organismal development rate is positively linked to cellular phosphorus (P). To test the GRH as part of the McMurdo Dry Valleys Long Term Ecological Research (LTER) program, we examined the effects of phosphorus (P) availability both in situ and in vitro, on the evolution of growth and development of free-living soil nematodes (primarily Plectus murrayi) that occur in the McMurdo Dry Valleys of Antarctica. During the 2008-2009 austral summer, we collected soils from two glacial till sequences, the Ross Sea till and Taylor II till, occurring in the Lake Fryxell and Lake Bonney basins, respectively, of Taylor Valley. Through a variety of subsequent analyses, we generated the environmental, molecular, and life history trait data contained herein. In addition, this package contains body size and biomass data for nematodes isolated from soil samples collected during the 1999-2000 and 2004-2005 austral summers.