Microbial life in challenging environments

TitleMicrobial life in challenging environments
Publication TypeThesis
Year of Publication2023
AuthorsDragone, NB
Secondary AuthorsFierer, N
Academic DepartmentDepartment of Ecology and Evolutionary Biology
UniversityUniversity of Colorado Boulder
CityBoulder, CO
Thesis Typedoctoral
KeywordsAntarctica, environmental conditions, microbial ecology, microorganisms, soils, tonga

Microorganisms are nearly ubiquitous on Earth, but the identity and function of microbial communities are inherently dependent on the properties of the specific environment in question. Here, I have studied soils around the world to answer questions about how the functional attributes of microorganisms allow them to respond to challenging environmental conditions. First, I explore how microbial communities in soils change across environmental gradients in Antarctica. I show that microbes in Antarctic surface soils are most restricted by low temperatures, low water availability, and high concentrations of salt. Microbial communities near the polar plateau, the most challenging environment, are dominated by Actinobacteria and Chloroflexi, and are enriched in genes associated with the oxidation of hydrogen gas as an energy source. Second, I show that the earliest microbial colonizers of a newly-formed volcanic island in the Kingdom of Tonga are chemolithotrophs that appear to have come from nearby geothermal systems. While many of these microbes utilize sulfur as an energy source, the most abundant organisms have genes that indicate they can oxidize trace gases including carbon monoxide and hydrogen. Finally, I show that organisms associated with carbon limited subsurface soils tend to have smaller genomes, grow more slowly, and have more gene pathways associated with metabolism and the storage of carbon. Taken together, these studies shed light on microbial survival in challenging soil environments and show the varied ways in which microbial communities interact with and are affected by their surroundings.