Wintertime brine discharge at the surface of a cold polar glacier and the unexpected absence of associated seismicity

TitleWintertime brine discharge at the surface of a cold polar glacier and the unexpected absence of associated seismicity
Publication TypeJournal Article
Year of Publication2022
AuthorsCarr, CG, Carmichael, JD, Pettit, EC
JournalJournal of Geophysical Research: Earth Surface
Date Published03/2022
Keywordscrevasses, cryoseismology, glacier hydrology, Rayleigh waves

A subglacial groundwater system beneath Taylor Glacier, Antarctica, discharges hypersaline, iron-rich brine episodically at the glacier surface to create Blood Falls. However, the triggering mechanism for these brine release events is not yet understood. Identifying which fracture processes are observed seismically can help us better characterize the hydrological system at Taylor Glacier, and more generally, provide us with a broader understanding of englacial hydrologic activity in cold glaciers. We document wintertime brine discharge using time-lapse photography. Subfreezing air temperatures during the brine discharge indicate that surface melt-induced hydrofracture is an unlikely trigger for brine release. Further, we analyze local seismic data to test a hypothesis that fracturing generates elevated surface wave energy preceding and/or coinciding with brine release events. Our results show no discernible elevated Rayleigh wave activity prior to or during Blood Falls brine release. Instead, we find a pattern of seismic events dominated by a seasonal signal, with more Rayleigh events occurring in the summer than the winter from the Blood Falls source area. We calculate that the volumetric opening of cracks that would generate Rayleigh waves at our detection limits are of similar size to myriad cracks in glacier ice, lake ice, and frozen sediment in the terminus area. We therefore propose that any fracturing coincident with brine release activity likely consists of a series of smaller opening events that are masked by other seismicity in the local environment.

Short TitleJGR Earth Surface