McMurdo LTER Publications
Export 78 results:
Author Title Type [ Year
Filters: First Letter Of Title is P [Clear All Filters]
The permanent ice cover of Lake Bonney, Antarctica: The influence of thickness and sediment distribution on photosynthetically available radiation and chlorophyll-a distribution in the underlying water column. Journal of Geophysical Research: Biogeosciences. 2014;119(9):1879 - 1891. doi:10.1002/2014JG002672.
. Polar and alpine microbiology in a changing world. FEMS Microbiology Ecology. 2014;89(2):209 - 210. doi:10.1111/fem.2014.89.issue-210.1111/1574-6941.12371.
. Patterns and processes of salt efflorescences in the McMurdo region, Antarctica. Artic, Antarctic and Alpine Research. 2015. Available at: http://aaarjournal.org/doi/abs/10.1657/AAAR0014-024.
Physical and chemical controls on the abundance and composition of stream microbial mats from the McMurdo Dry Valleys, Antarctica. . Environmental Studies. 2015;Ph.D.:272. Available at: https://search.proquest.com/docview/1690497718?accountid=14503.
. The Polar Regions: An Environmental History. Cambridge: Polity; 2015:248. Available at: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0745670806.html.
. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams. Water Resources Research. 2015;51(8):6725 - 6738. doi:10.1002/2015WR017618.
Pressure-driven, shoreline currents in a perennially ice-covered, pro-glacial lake in Antarctica, identified from a LiCl tracer injected into a pro-glacial stream. Hydrological Processes. 2015;29(9):2212 - 2231. doi:10.1002/hyp.v29.910.1002/hyp.10352.
. Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology. 2016;92(10):fiw148. doi:10.1093/femsec/fiw148.
Patterns of hydrologic connectivity in the McMurdo dry valleys, Antarctica: a synthesis of 20 years of hydrologic data. Hydrological Processes. 2016;30(17):2958-2975. doi:10.1002/hyp.10818.
. Photoadaptation to the polar night by phytoplankton in a permanently ice-covered Antarctic lake. Limnology and Oceanography. 2016;61(1). doi:10.1002/lno.10107.
. Physiological characteristics of fungi associated with Antarctic environments. Land Resources and Environmental Sciences. 2016;M.S. Available at: https://scholarworks.montana.edu/xmlui/handle/1/9835.
. Physiological Ecology of Microorganisms in Subglacial Lake Whillans. Frontiers in Microbiology. 2016;7. doi:10.3389/fmicb.2016.01705.
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem. PeerJ. 2017;5(10):e3377. doi:10.7717/peerj.3377.
. Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Molecular Ecology. 2018;27(24):5279 - 5293. doi:10.1111/mec.14953.
. The physical limnology of a permanently ice-covered and chemically stratified Antarctic lake using high resolution spatial data from an autonomous underwater vehicle. Limnology and Oceanography. 2018;63(3):1234 - 1252. doi:10.1002/lno.10768.
. Physiological and Biochemical Adaptations of Psychrophiles. In: Extremophiles. Extremophiles. Boca Raton: CRC Press; 2018. Available at: https://www.taylorfrancis.com/books/e/9781498774932/chapters/10.1201%2F9781315154695-9.
. Placing the past: The McMurdo Dry Valleys and the problem of geographical specificity in Antarctic history. In: Anthropocene Antarctica: Perspectives from the Humanities, Law and Social Sciences. 1stst ed. Anthropocene Antarctica: Perspectives from the Humanities, Law and Social Sciences. London: Routledge; 2019. doi:10.4324/9780429429705.
. The polar regions in a 2°C warmer world. Science Advances. 2019;5(12):eaaw9883. doi:10.1126/sciadv.aaw9883.
Prediction of ice-free conditions for a perennially ice-covered Antarctic lake. Journal of Geophysical Research: Earth Surface. 2019;124(2). doi:10.1029/2018JF004756.
. Provisional checklist of terrestrial heterotrophic protists from Antarctica. Antarctic Science. 2019. doi:10.1017/S0954102019000361.
. Picocyanobacterial cells in near‐surface air above terrestrial and freshwater substrates in Greenland and Antarctica. Environmental Microbiology Reports. 2020. doi:10.1111/1758-2229.12832.
. Patterns and trends of organic matter processing and transport: Insights from the US Long-term Ecological Research Network. Climate Change Ecology. 2021;2:100025. doi:10.1016/j.ecochg.2021.100025.
Phagotrophic protists and their associates: Evidence for preferential grazing in an abiotically driven soil ecosystem. Microorganisms. 2021;9(8):1555. doi:10.3390/microorganisms9081555.
. Phagotrophic protists (protozoa) in Antarctic terrestrial ecosystems: Diversity, distribution, ecology, and best research practices. Polar Biology. 2021;44(8):1467-1484. doi:10.1007/s00300-021-02896-3.
. Patterns of interdisciplinary collaboration resemble biogeochemical relationships in the McMurdo Dry Valleys, Antarctica: A historical social network analysis of science, 1907–2016. Polar Research. 2022;41:8037. doi:10.33265/polar.v41.8037.
.